Chapter Four

4.1 Arithmetic

- Where we've been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:
 - Instruction Set Architecture
 - Assembly Language and Machine Language
- What's up ahead:
 - Number system in computer
 - Implementing the arithmetic architecture
4.2 Numbers

- Bits are just bits (no inherent meaning)
 - conventions define relationship between bits and numbers
- Binary numbers (base 2): with each digit d of 0 and 1
 - 0000 0001 0010 0011 0100 0101 0110 0111 (32 bits)
 decimal value can be 0...2^n-1; see example in p.211
- Of course the real case is more complicated:
 - fixed point numbers that represent integer are finite: overflow may occur
 - Floating point numbers can represent real numbers
 - negative numbers: Sign Magnitude, One’s Complement, Two’s Complement (e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers?
 - i.e., which bit patterns will represent which numbers?

Possible Negative Number Representations

- The concept of sign bit
 - Sign Magnitude: One’s Complement: Two’s Complement
 | | | |
 | 000 = +0 | 000 = +0 | 000 = +0 |
 | 001 = +1 | 001 = +1 | 001 = +1 |
 | 010 = +2 | 010 = +2 | 010 = +2 |
 | 011 = +3 | 011 = +3 | 011 = +3 |
 | 100 = -0 | 100 = -3 | 100 = -4 |
 | 101 = -1 | 101 = -2 | 101 = -3 |
 | 110 = -2 | 110 = -1 | 110 = -2 |
 | 111 = -3 | 111 = -0 | 111 = -1 |
- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?
- The value represented by two’s complement with n bits

\[b_{n-1} \times (-2^{n-1}) + \sum_{i=0}^{n-2} b_i \times 2^i \]
32 bits in MIPS

- 32 bit signed numbers:
 - 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
 - 0000 0000 0000 0000 0000 0000 0000 0001two = +1ten
 - 0000 0000 0000 0000 0000 0000 0000 0010two = +2ten
 - ...
 - 0111 1111 1111 1111 1111 1111 1111 1110two = +2,147,483,646ten
 - 0111 1111 1111 1111 1111 1111 1111 1111two = +2,147,483,647ten
 - 1000 0000 0000 0000 0000 0000 0000 0000two = -2,147,483,648ten
 - 1000 0000 0000 0000 0000 0000 0000 0001two = -2,147,483,647ten
 - 1000 0000 0000 0000 0000 0000 0000 0010two = -2,147,483,646ten
 - ...
 - 1111 1111 1111 1111 1111 1111 1111 1101two = -3ten
 - 1111 1111 1111 1111 1111 1111 1111 1110two = -2ten
 - 1111 1111 1111 1111 1111 1111 1111 1111two = -1ten
 - 1111 1111 1111 1111 1111 1111 1111 1111two = -1ten

- unsigned integer: address
 - slt, sli ; unsigned version :sltu, sliu
 - Example: P215

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: “negate” and “invert” are quite different!

- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits: “sign extension”
 - 0010 -> 0000 0010 (+2)
 - 1010 -> 1111 1010 (-6)

- Fig.4.2 for MIPS assembly language with unsigned operation
4.3 Addition & Subtraction

- Just like in grade school (carry/borrow 1s), unsigned number
 \[
 \begin{array}{c}
 0111 \\
 + 0110 \\
 \hline
 1101
 \end{array}
 \begin{array}{c}
 0111 \\
 - 0110 \\
 - 0101 \\
 \hline
 0001
 \end{array}
 \begin{array}{c}
 0110 \\
 - 0110 \\
 - 0101 \\
 \hline
 0001
 \end{array}
 \]

- Two’s complement operations easy
 - subtraction using addition of negative numbers: 7-6=7+(-6)
 \[
 \begin{array}{c}
 0111 \\
 + 1010 \\
 \hline
 0001
 \end{array}
 \]

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 \[
 \begin{array}{c}
 0111 \\
 + 0001 \\
 \hline
 1000
 \end{array}
 \]
 note that overflow term is somewhat misleading,
 it does not mean a carry “overflowed” -> The overall result is wrong

4.3.1 Adder

\[
\begin{array}{cccccc}
(0) & (0) & (1) & (1) & (0) & (Carries) \\
\hline
\ldots & 0 & 0 & 0 & 1 & 1 & 1 \\
\ldots & 0 & 0 & 0 & 1 & 1 & 0 \\
\ldots & (0) & 0 & (0) & 1 & (1) & 0 \\
\ldots & (0) & 0 & (0) & 1 & (1) & 0 \\
\end{array}
\]
Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction

\[S = A + B \text{ with overflow bit } O = a_{n-1}b_{n-1}S_{n-1} + a_{n-1}b_{n-1}S_{n-1} \]

- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive

- Effects of Overflow
 - An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
 - Don’t always want to detect overflow
 - new MIPS instructions: addu, addiu, subu
 - note: addiu still sign-extends!
 - note: sltu, sltiu for unsigned comparisons

4.4 Boolean Algebra & Gates

- Logic operation:
 - Shift left (<<): sll, shift right (>>): srl
 - bit-by-bit AND (&): and, andi, Bit-by-Bit OR (|) (bitwise operation): or, ori

- A general logic or (control) problem: Consider a logic function with three inputs: A, B, and C.
 - Output D is true if at least one input is true
 - Output E is true if exactly two inputs are true
 - Output F is true only if all three inputs are true
 - Show the truth table for these three functions.
 - Show the Boolean equations for these three functions.
 - Show an implementation consisting of inverters, AND, and OR (fig.4.8) gates or only NAND gates
4.5 An ALU (arithmetic logic unit)

- Review the operation of Multiplexor: Selects one of the inputs to be the output, based on a control input: If \(s=0 \), \(c=a \) or \(s=1 \), \(c=b \)

- Let’s build a 32-bits ALU to support the \texttt{andi}, \texttt{ori} and \texttt{add} instructions
 - we’ll just build a 1-bit ALU, and use 32 of them
 - Let’s first look at a 1-bit ALU for addition:

1. \texttt{AND} gate (\(c = a \cdot b \))
 \[
 \begin{array}{c|c|c}
 a & b & c \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
 \end{array}
 \]

2. \texttt{OR} gate (\(c = a + b \))
 \[
 \begin{array}{c|c|c}
 a & b & c \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
 \end{array}
 \]

3. \texttt{Inverter} (\(c = \neg a \))
 \[
 \begin{array}{c|c}
 a & c \\
 \hline
 0 & 1 \\
 1 & 0 \\
 \end{array}
 \]

4. \texttt{Multiplexer}
 - if \(d = 0 \), \(c = a \)
 - else \(c = b \)
 \[
 \begin{array}{c|c|c}
 d & a & c \\
 \hline
 0 & a & c \\
 1 & b & c \\
 \end{array}
 \]

\textbf{note: we call this a 2-input mux even though it has 3 inputs!}
1-bit Adder and 1-bit ALU

<table>
<thead>
<tr>
<th>CarryIn</th>
<th>A</th>
<th>B</th>
<th>AB[\text{G}]</th>
<th>AB[\text{P}]</th>
<th>SUM</th>
<th>CarryOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• $c_{\text{out}} = a \cdot b + a \cdot c_{\text{in}} + b \cdot c_{\text{in}}$
• $\text{sum} = a \oplus b \oplus c_{\text{in}}$

Building a 32 bit ALU

- A 32 bit ALU constructed from 32 1-bit ALUs
- What about subtraction $(a - b)$?
 - Two's complement approch: just negate b and add.
 - How do we negate?

A very clever solution:
Tailoring the ALU to the MIPS:

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise
 - use subtraction: \((a-b) < 0\) implies \(a < b\)
- Need to support test for equality (beq $t5, $t6, $t7)
 - use subtraction: \((a-b) = 0\) implies \(a = b\)

Critical Path of n-bit Ripple-carry adder is \(n \times T_{\text{carryout}}\)
Test for equality

- Notice of control lines:

 - $000 = \text{and}$
 - $001 = \text{or}$
 - $010 = \text{add}$
 - $110 = \text{subtract (beq)}$
 - $111 = \text{slt}$

 Note: zero is a 1 when the result is zero!

Conclusions

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two’s complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU

- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series
 (on the “critical path” or the “deepest level of logic”)
 - In today’s 0.18 um CMOS technology: 2 inputs NAND (NOR) gate: 0.14 ns

- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance
 (similar to using better algorithms in software)
 - we’ll look at two examples for addition and multiplication
Problem: ripple carry adder is slow ->
Carry-lookahead adder

• Is a 32-bit ALU as fast as a 1-bit ALU?
• Is there more than one way to do addition?
 – two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

\[
\begin{align*}
c_1 &= b_0c_0 + a_0c_0 + a_0b_0 \\
c_2 &= b_1c_1 + a_1c_1 + a_1b_1 \\
c_3 &= b_2c_2 + a_2c_2 + a_2b_2 \\
c_4 &= b_3c_3 + a_3c_3 + a_3b_3
\end{align*}
\]

Not feasible! Why?

• Motivation:
 – If we didn’t know the value of carry-in, what could we do?
 – When would we always generate a carry? \(g_i = a_i b_i \)
 – When would we propagate the carry? \(p_i = a_i + b_i \)

• Did we get rid of the ripple?

\[
\begin{align*}
c_1 &= g_0 + p_0c_0 \\
c_2 &= g_1 + p_1c_1 \\
c_3 &= g_2 + p_2c_2 \\
c_4 &= g_3 + p_3c_3
\end{align*}
\]

\(C_i = g_i + p_i c_i \)
\(C_j = g_j + p_j g_j + p_j p_j \)
\(C_k = g_k + p_k g_k + p_k p_k \)
\(C_0 = g_0 + p_0 g_0 + p_0 p_0 \)

Feasible! Why?

Plumbing as Carry Lookahead Analogy

Tsung-Han Tsai
One-Level Carry-lookahead adder

\[C_{i+1} = a_i b_i + c_i (a_i + b_i) = g_i + c_i p_i \]

where \(p_i = a_i + b_i \) ... propagation signal,

\(g_i = a_i b_i \) ... generation signal

so \(C_{i+1} = g_i + p_i c_i = \ldots = g_i + p_i g_{i-1} + \ldots + p_i p_{i-2} \ldots \)

and \(s_i = c_i \oplus a_i \oplus b_i = c_i \oplus p_i (p_i = a_i \oplus b_i \) instead of \(a_i + b_i \))

16-bits one-level carry look-ahead adder.

Use principle to build bigger adders

- Can’t build a 16 bit adder this way... (too big)
- Could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!
4.6 Multiplication

- More complicated than addition
 - accomplished via several shifting and addition operations
- More cycle time and more area as compared to adder
- Let’s look at 3 versions based on grade school algorithm

\[
\begin{array}{c}
0010 \quad \text{(multiplicand)} \\
\times 1011 \quad \text{(multiplier)} \\
\hline
0010
\end{array}
\]

- 0010
- 0000
- 0010
- 0010110

- Negative numbers: convert and multiply
 - there are better techniques, we won’t look at them
Multiplication: Implementation

1. Test Multiplier0
 1a. Add multiplicand to product and place the result in Product register
2. Shift the Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit

No: < 32 repetitions
Yes: 32 repetitions

Second Version

1. Test Multiplier0
 1a. Add multiplicand to the left half of the product and place the result in the left half of the Product register
2. Shift the Product register right 1 bit
3. Shift the Multiplier register right 1 bit

No: < 32 repetitions
Yes: 32 repetitions

Done
Final Version

Start

Product0 = 1
Product0 = 0

1. Test Product

1a. Add multiplicand to the left half of the product and place the result in the left half of the Product register

2. Shift the Product register right 1 bit

No: < 32 repetitions
Yes: 32 repetitions

Done

Divisor

Shift right

64 bits

64-bit ALU

Quotient
Shift left
32 bits

64 bits

Divider

Remainder
Write

64 bits

Control
lok

Start
Fig 4.39

![Diagram of a circuit](Image)

Fig 4.40 & 4.41

![Diagram of a circuit](Image)
Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .00000001
 - very large numbers, e.g., 3.15576 * 10^9

- Scientific notation:
 - Base 10: 1.0*10^-9, 0.1*10^-8, 3.15576 * 10^9
 - No leading 0s is called a normalized number
 - Scientific notation in binary number: a = 0.11*2^1 (= 1.5) = (-1)**F*2^E, where s = 0, F=0.11, E = 1 and . is called binary point; (sign bit;F;E)
 - sign, exponent (E), significand (F): (-1)**sign *significand* 2**exponent
 - a = 0.11*2^1 is called the floating point notation where floating point means the position of floating point is not fixed.
 - The more bits for significand gives more accuracy
 - more bits for exponent increases range

IEEE 754 floating-point standard

- IEEE 754 floating point standard:
 - single precision: 1 bit for sign, 8 bit exponent, 23 bit significand
 - double precision: 1 bit for sign, 11 bit exponent, 52 bit significand

 Significand (continued;32 bits)

- Leading “1” bit of significand is implicit
- Exponent is “biased” to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - range of floating-point: (-1)**sign x (1+significand)* 2**exponent – bias
 - If significant equals s1s2s3,... -> (-1)**sign x (1+s1 x 2^-1 +s2 x2^-2 ...) x 2**exponent – bias

Overflow and underflow can still occur
IEEE 754 Floating-Point Representation

- Example:
 - decimal: -0.75 = -3/4 = -3/2^2
 - binary: -0.11 = -1.1 x 2^-1
 - floating point: exponent = 126 = 01111110
 - IEEE single precision: 10111111010000000000000000000000

- Example P.280
- Floating-point addition: Example: the four steps in P.281

\[x = (s_F, F, E) = (-1)^s (1+F) \times 2^{E} \text{ with } \frac{1}{2} \leq |1-F| < 1, F: p \text{ (23) bits} \]

\[0 \leq |1-F| < 1, E: q \text{ (8) bits} \]

- Addition: \((x_1, F_1, E_1) \pm (x_2, F_2, E_2) =\)
 \[((1-(-1)) \times F_1 \times 2^{E_1}) \pm ((1-(-1)) \times F_2 \times 2^{E_2}) \]

 \[\text{if } E_1 > E_2, \] \[(F_1 \times 2^{E_1-E_2}) \pm (F_2 \times 2^{E_1-E_2}) \]

 \[\text{if } E_1 < E_2, \]

- radix point of \(x_1, x_2\) must be aligned => shifting the mantissa with a smaller exponent \(|e_1-e_2|\) places to the right.
- Normalize the sum
- Round the significant to the appropriate number of bits

Flow Chart of Floating-Point Addition

1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent.

2. Add the significands

3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent.

4. Round the significand to the appropriate number of bits.
Floating point Multiplication

- FLP multiplication and division:

\[(s_1,F_1,E_1) \times (s_2,F_2,E_2) = (s_1 \oplus s_2, F_1 \times F_2, E_1 + E_2 - \text{bias})\]

\[(s_1,F_1,E_1) / (s_2,F_2,E_2) = (s_1 \oplus s_2, F_1 / F_2, E_1 - E_2 + \text{bias})\]

\(F_1 \times F_2\) and \(E_1 + E_2 - \text{bias}\) can be executed simultaneously.

- The same amount of execution time as corresponding FXP operation.

\[\frac{1}{r} \leq |F_1 \times F_2| < 1: \text{ok}\]

\[\frac{1}{r} \leq |F_1 \times F_2| < \frac{1}{r} \Rightarrow (r + F, E - 1)\]

\[\frac{1}{r} \leq |F_1 / F_2| < r: \text{ok} \quad \text{when} \quad F_1 < F_2\]

\[1 \leq |F_1 / F_2| < r: (F \times r^{-1}, E + 1) \quad \text{when} \quad F_1 \geq F_2 \neq 0\]

- Example: Step 1 to Step 5 in p.283 to P.286
Flow Chart of Floating-Point Multiplication

1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent
2. Multiply the significands
3. Normalize the product if necessary, shifting it right and incrementing the exponent
4. Round the significand to the appropriate number of bits
5. Set the sign of the product to positive if the signs of the original operands are the same; if they differ make the sign negative

MIPS Floating-point Operation

- MIPS supports the IEEE 754 single-precision and double-precision formats
 - add.s, add.d; sub.s, sub.d
 - mul.s, mul.d; div.s, div.d
 - Comparison Ins: c.x.s or c.x.d where x can be eq, neq, lt, le, gt, ge
 - Sets a bit to true or false
 - Floating branch: true (bclt) and false (bcfl)
- Have separate 32 floating-point register: $f0, f1, f2...f31
 - Each has 32 bits and are used in pairs for double precision numbers
 - Loads and stores for floating-point registers: lw.c1 and sw.c1
 - Example: P288
- Summary: Fig.4.47 on P.291
- Example: P.293
Floating Point Complexities

- Operations are somewhat more complicated than integer operation
- In addition to overflow we can have “underflow”
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round: example in P.297
 - four rounding modes
 - positive divided by zero yields “infinity”
 - zero divide by zero yields “not a number”
 - other complexities
- C data types and MIPS Ins for them: see table on p.299
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

Chapter Four Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two’s complement
 - IEEE 754 floating point
- Computer instructions determine “meaning” of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).
- We are ready to move on (and implement the processor)