Superpixel 2D to 3D Conversion

 

摘要

  此演算法基於superpixel的2D-to-3D,是一個自動深度擷取轉換方法。近來三維立體影像需求的增加,而三維影像內容資源之缺乏。如果想容易的享受到逼真的立體視覺效果,勢必需要開發低成本、高效率的轉換方法,將原本二維的影像快速的轉換成三維立體影像。

 

演算法

  首先,我們使用高斯模型作前景偵測,分離出前景與背景,接著,我們使用superpixel演算法來找出邊緣資訊,我們將顏色相近和位置相鄰的pixels作clustering,根據superpixel群聚出來的像素我們給予初始的深度值,我們會初始六種不同的深度圖,利用hough transform來找出消失線的斜率,接著利用斜率可知哪個深度圖是我們要的,給完初始深度值後,我們再用sobel edge detection來作第二次的邊緣偵測,用兩種不同的閥值來得到不同邊緣資訊,一個有較多雜訊但邊緣資訊較完整,另一個雜訊較少但邊緣資訊也較缺乏,然後用thinning演算法來降低邊緣像素的寬度使其變成只有1 pixel,比較這兩個結果後重新賦予深度值,接著再將前景資訊加進來給前景物件相同的深度值,為了使深度圖更加精準,因此,我們利用四種方向掃描整張影像來修正深度值,即可得到最後的深度圖,最後,再用depth image based rendering (DIBR)來合成左右視角的影像,如此,就完成了3D影像。


 

 

Demo

12

 LiftView                 RightView

 

Final Depth