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Chapter Seven
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• SRAM:
– value is stored  on a pair of inverting gates
– very fast : 3 ~20 ns;  takes up more space than DRAM (4 to 6 

transistors); The most expensive among the three ($1~5 per Mbyte)
• DRAM:

– value is stored as a charge on capacitor 
– slower than SRAM, 45~90 ns; $0.1~0.5 per Mbyte (PC-133,128 MB, 

$19.95, 2001/12)
• Magnetic disk (Hard disk)

– value is stored in the direction of magnetic field;
– 7~15 ms; The most cheap one among the three,$0.002~0.004 per 

Mbyte (40 GB, $110, 2001/12)

Memories:  Review

Word line

Pass transistor

Capacitor

Bit line
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Technology Trends

DRAM
Year Size Cycle Time
1980 64 Kb 250 ns
1983 256 Kb 220 ns
1986 1 Mb 190 ns
1989 4 Mb 165 ns
1992 16 Mb 145 ns
1995 64 Mb 120 ns

Capacity Speed (latency)
Logic: 2x  in  3 years 2x  in 3 years
DRAM: 4x  in  3 years 2x  in 10 years
Disk: 4x  in  3 years 2x  in 10 years

1000:1! 2:1!

•Access time: For RAM: The time it takes to perform a read or write operation. For non-
RAM type, the time it takes to position the read-write mechanism at the desired location

•TN = TA +N/R, where TN =Average time to read or write N bits, TA =Average access time, 
N=Number of bits, R=transfer rate, in bits per second
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Why Memory Hierarchy?
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CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy
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access time 

Size of the memory at each level

• Users want large and fast memories! 
– However, it is impossible to fulfill both the requirement of large 

and fast memory ; Example, make reference to a book in the 
library

– Solution: build a memory hierarchy

Exploiting Memory Hierarchy

Processor

Data are transferred

Registers

Cache

Main Memory

Disk Cache

Magnetic Disk

Magnetic tape/   
Optical Disk
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Locality: A concept to improve efficiency

• If an item is referenced
– temporal locality:  it will tend to be referenced again soon
– spatial locality:   nearby items will tend to be referenced soon.

• Our initial focus:  two levels (upper, lower)
– block:   minimum unit of data 
– hit:  data requested is in the upper level; Hit Rate: the fraction of 

memory access found in the upper level;Hit Time: Time to 
access the upper level which consists of RAM access time + 
Time to determine hit/miss

– miss:  data requested is not in the upper level; Miss Rate  = 1 -
(Hit Rate); Miss penalty: the time to replace a block in the upper 
level with the corresponding block from the lower level

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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Memory Hierarchy of a Modern Computer System
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the 
cheapest technology.

– Provide access at the speed offered by the fastest technology.
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7.2 The Basics of Caches
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• Two issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped”: For each item of data at the lower level, there is 

exactly one location in the cache where it might be. (Block address) 
modulo (Number of cache blocks in the cache), lots of items at the 
lower level share locations in the upper level
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• A referenced address is divided into 
– A cache index: Which is used to select the block
– A tag field: compared with the tag field  of the cache

• Example: P.550

Direct Mapped Cache:Single-Word block

Address (showing bit positions)

20 10

Byte

offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30       13 12 11       2 1 0
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• Read operation
– hits:this is what we want!
– Misses:stall the CPU, fetch block from memory, deliver to cache, 

restart 
• Write operation

– method 1: write through used in DECStation 3100
• hits:can replace data in cache and memory (write-through).It does not 

provide very good performance because every write causes the data to be 
written to main memory => A write buffer scheme to partially release 
this pain.

• misses:also replace the data in the cache and memory
– Method 2: write back, need more complex implementation

• hits and misses: write the data only into the cache (write-back the cache 
later)

• Example: Fig.7.9

Hits vs. Misses
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• Taking advantage of spatial locality: to have a cache block 
that is larger than one word in length; Example: Fig.7.10 and 
P.556=>Read operation is the same except when miss 
occurred a whole block is replaced; write operation is different
! -> require read operation when miss occurs

Direct Mapped Cache:Multiword Block

Address (showing bit positions)

16 12 Byte

offset

V Tag Data

Hit Data

16 32

4K

entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex
Tag

31      16 15           4 32 1 0
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• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality in code

Performance vs. Block Size
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gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%
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• Make reading multiple words easier by using banks of memory

Hardware Issues

CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory
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Memory
bank 1

Memory
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Memory
bank 3

Memory
bank 0

c. Interleaved memory organization
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Performance

• Simplified model:
execution time = (execution cycles + stall cycles) ∗ cycle time

stall cycles = # of instructions * miss ratio * miss penalty
• Two ways of improving performance:

– decreasing the miss ratio
– decreasing the miss penalty

• Some Issues 
– Processor speeds continue to increase very fast; much faster 

than either DRAM or disk access times
– Design challenge:  dealing with this growing disparity

• Trends:
– synchronous SRAMs (provide a burst of data)
– redesign DRAM chips to provide higher bandwidth or processing 
– restructure code to increase locality
– use prefetching
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Virtual Memory
• Main memory can act as a cache for the secondary storage (disk)

– Virtual memory technique: automatically manages the two levels of 
the memory hierarchy represented by main memory (physical 
memory) and secondary storage

• Two major motivations
– sharing of memory among multiple programs
– to remove the burden of limited main memory

• Advantages:
– illusion of having more physical memory
– program relocation 
– protection

Physical addresses

Disk addresses

Virtual addresses
Address translation

Virtual addresses Physical Addresses
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Pages:  virtual memory blocks

• The address is broken into a virtual page number and a page 
offset

• Page faults:  the data is not in memory, retrieve it from disk
– huge miss penalty, thus pages should be fairly large (e.g., 4KB)
– reducing page faults is important 
– can handle the faults in software instead of hardware
– using write-through is too expensive so we use writeback

– In Fig.7.21, the main memory can have at most 1 GB, while the 
virtual address space is 4 GB

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

18Tsung-Han Tsai

Page Tables

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or

disk address

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

•Resides in memory is indexed with the page number from virtual 
address and contains the corresponding physical page number
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Making Address Translation Fast: The TLB
• To improve “every memory access by a program can take at 

least two accee”(one page table access and one real data 
access in physical memory)
– A cache for address translations:  translation lookaside buffer

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page

addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page


number

Physical page

or disk address

Physical memory

Disk storage

Cache for page table
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Integrating Virtual Memory TLBs and caches

Yes

Deliver data

to the CPU

Write?

Try to read data

from cache

Write data into cache,

update the tag, and put


the data and the address

into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss

exception

No

YesNo

YesNo

Write access

bit on?




YesNo

Write protection

exception

Physical  address

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte

offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB







Physical address

31 30 29  15 14 13 12 11 10 9 8  3 2 1 0 
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Modern Systems
• Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through
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• Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

• Design challenge:  dealing with this growing disparity

• Trends:
– synchronous DRAMs (provide a burst of data), DDR SDRAM, 

RAMBUS
– redesign DRAM chips to provide higher bandwidth or processing 
– restructure code to increase locality
– use prefetching (make cache visible to ISA)

Some Issues


