
1Tsung-Han Tsai

Chapter Seven

2Tsung-Han Tsai

• SRAM:
– value is stored on a pair of inverting gates
– very fast : 3 ~20 ns; takes up more space than DRAM (4 to 6

transistors); The most expensive among the three ($1~5 per Mbyte)
• DRAM:

– value is stored as a charge on capacitor
– slower than SRAM, 45~90 ns; $0.1~0.5 per Mbyte (PC-133,128 MB,

$19.95, 2001/12)
• Magnetic disk (Hard disk)

– value is stored in the direction of magnetic field;
– 7~15 ms; The most cheap one among the three,$0.002~0.004 per

Mbyte (40 GB, $110, 2001/12)

Memories: Review

Word line

Pass transistor

Capacitor

Bit line

3Tsung-Han Tsai

Technology Trends

DRAM
Year Size Cycle Time
1980 64 Kb 250 ns
1983 256 Kb 220 ns
1986 1 Mb 190 ns
1989 4 Mb 165 ns
1992 16 Mb 145 ns
1995 64 Mb 120 ns

Capacity Speed (latency)
Logic: 2x in 3 years 2x in 3 years
DRAM: 4x in 3 years 2x in 10 years
Disk: 4x in 3 years 2x in 10 years

1000:1! 2:1!

•Access time: For RAM: The time it takes to perform a read or write operation. For non-
RAM type, the time it takes to position the read-write mechanism at the desired location

•TN = TA +N/R, where TN =Average time to read or write N bits, TA =Average access time,
N=Number of bits, R=transfer rate, in bits per second

4Tsung-Han Tsai

Why Memory Hierarchy?

Processor
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

　Moore’s Law

Processor-DRAM Memory Gap (latency): Rely on Caches
to bridge gap

5Tsung-Han Tsai

CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy

Increasing distance

from the CPU in

access time

Size of the memory at each level

• Users want large and fast memories!
– However, it is impossible to fulfill both the requirement of large

and fast memory ; Example, make reference to a book in the
library

– Solution: build a memory hierarchy

Exploiting Memory Hierarchy

Processor

Data are transferred

Registers

Cache

Main Memory

Disk Cache

Magnetic Disk

Magnetic tape/
Optical Disk

6Tsung-Han Tsai

Locality: A concept to improve efficiency

• If an item is referenced
– temporal locality: it will tend to be referenced again soon
– spatial locality: nearby items will tend to be referenced soon.

• Our initial focus: two levels (upper, lower)
– block: minimum unit of data
– hit: data requested is in the upper level; Hit Rate: the fraction of

memory access found in the upper level;Hit Time: Time to
access the upper level which consists of RAM access time +
Time to determine hit/miss

– miss: data requested is not in the upper level; Miss Rate = 1 -
(Hit Rate); Miss penalty: the time to replace a block in the upper
level with the corresponding block from the lower level

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

7Tsung-Han Tsai

Memory Hierarchy of a Modern Computer System
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the
cheapest technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes): Ks Ms

Tertiary
Storage
(Disk)

10,000,000,000s
(10s sec)

Ts

8Tsung-Han Tsai

7.2 The Basics of Caches

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

• Two issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped”: For each item of data at the lower level, there is

exactly one location in the cache where it might be. (Block address)
modulo (Number of cache blocks in the cache), lots of items at the
lower level share locations in the upper level

9Tsung-Han Tsai

• A referenced address is divided into
– A cache index: Which is used to select the block
– A tag field: compared with the tag field of the cache

• Example: P.550

Direct Mapped Cache:Single-Word block

Address (showing bit positions)

20 10

Byte

offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

10Tsung-Han Tsai

• Read operation
– hits:this is what we want!
– Misses:stall the CPU, fetch block from memory, deliver to cache,

restart
• Write operation

– method 1: write through used in DECStation 3100
• hits:can replace data in cache and memory (write-through).It does not

provide very good performance because every write causes the data to be
written to main memory => A write buffer scheme to partially release
this pain.

• misses:also replace the data in the cache and memory
– Method 2: write back, need more complex implementation

• hits and misses: write the data only into the cache (write-back the cache
later)

• Example: Fig.7.9

Hits vs. Misses

11Tsung-Han Tsai

• Taking advantage of spatial locality: to have a cache block
that is larger than one word in length; Example: Fig.7.10 and
P.556=>Read operation is the same except when miss
occurred a whole block is replaced; write operation is different
! -> require read operation when miss occurs

Direct Mapped Cache:Multiword Block

Address (showing bit positions)

16 12 Byte

offset

V Tag Data

Hit Data

16 32

4K

entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex
Tag

31 16 15 4 32 1 0

12Tsung-Han Tsai

• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality in code

Performance vs. Block Size

1 K B
8 K B
1 6 K B
6 4 K B
2 56 K B

25 6

4 0%

3 5%

3 0%

2 5%

2 0%

1 5%

1 0%

5%

0%

M
is

s
r a

te

641 64

B loc k s iz e (by tes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

13Tsung-Han Tsai

• Make reading multiple words easier by using banks of memory

Hardware Issues

CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

14Tsung-Han Tsai

Performance

• Simplified model:
execution time = (execution cycles + stall cycles) ∗ cycle time

stall cycles = # of instructions * miss ratio * miss penalty
• Two ways of improving performance:

– decreasing the miss ratio
– decreasing the miss penalty

• Some Issues
– Processor speeds continue to increase very fast; much faster

than either DRAM or disk access times
– Design challenge: dealing with this growing disparity

• Trends:
– synchronous SRAMs (provide a burst of data)
– redesign DRAM chips to provide higher bandwidth or processing
– restructure code to increase locality
– use prefetching

15Tsung-Han Tsai

16Tsung-Han Tsai

Virtual Memory
• Main memory can act as a cache for the secondary storage (disk)

– Virtual memory technique: automatically manages the two levels of
the memory hierarchy represented by main memory (physical
memory) and secondary storage

• Two major motivations
– sharing of memory among multiple programs
– to remove the burden of limited main memory

• Advantages:
– illusion of having more physical memory
– program relocation
– protection

Physical addresses

Disk addresses

Virtual addresses
Address translation

Virtual addresses Physical Addresses

17Tsung-Han Tsai

Pages: virtual memory blocks

• The address is broken into a virtual page number and a page
offset

• Page faults: the data is not in memory, retrieve it from disk
– huge miss penalty, thus pages should be fairly large (e.g., 4KB)
– reducing page faults is important
– can handle the faults in software instead of hardware
– using write-through is too expensive so we use writeback

– In Fig.7.21, the main memory can have at most 1 GB, while the
virtual address space is 4 GB

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

18Tsung-Han Tsai

Page Tables

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or

disk address

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

•Resides in memory is indexed with the page number from virtual
address and contains the corresponding physical page number

19Tsung-Han Tsai

Making Address Translation Fast: The TLB
• To improve “every memory access by a program can take at

least two accee”(one page table access and one real data
access in physical memory)
– A cache for address translations: translation lookaside buffer

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page

addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page

number

Physical page

or disk address

Physical memory

Disk storage

Cache for page table

20Tsung-Han Tsai

Integrating Virtual Memory TLBs and caches

Yes

Deliver data

to the CPU

Write?

Try to read data

from cache

Write data into cache,

update the tag, and put

the data and the address

into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss

exception

No

YesNo

YesNo

Write access

bit on?

YesNo

Write protection

exception

Physical address

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte

offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

21Tsung-Han Tsai

Modern Systems
• Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

22Tsung-Han Tsai

• Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

• Design challenge: dealing with this growing disparity

• Trends:
– synchronous DRAMs (provide a burst of data), DDR SDRAM,

RAMBUS
– redesign DRAM chips to provide higher bandwidth or processing
– restructure code to increase locality
– use prefetching (make cache visible to ISA)

Some Issues

