Chapter Six
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Pipelining

* Improve performance by increasing instruction throughput

— Multiple instructions are overlapped in execution
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Pipelining

» Ideal speedup is number of stages in the pipeline. Do we achieve this?

— Example on Page 438. Pipelining improve throughput not execution time of
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Pipelining

What makes it easy (like MIPS)

— all instructions are the same length (some computers have Ins with

different length(bits))

— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?

— structural hazards: suppose we had only one memory

— control hazards: need to worry about branch instructions

— data hazards: an instruction depends on a previous instruction

+  We’ll build a simple pipeline and look at these issues

« We’ll talk about modern processors and what really makes it hard:

— exception handling

— trying to improve performance with out-of-order execution, etc.
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Control Hazards in Pipelining :Branch case
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Control Hazards in Pipelining :Branch case

Method 3: Delayed decision (used in MIPS)
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Data Hazards in Pipelining:Forwarding
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Write

6.2 A pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access

/C

WB: Write back
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*  Why do we need to add to actually split the datapath into stages?
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Graphically Representing Single-Cycle

Instruction Execution
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* Place datapaths on a time line -> Can' hélp with answering

questions like:
— How many cycles does it take to execute this instruction?

— What is the ALU doing during cycle 4?

— The relationship among different instructions that are executed 9
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* Pipeline registers are used to separate pipeline stage
— Each bus with n lines (n bits) use n D-FF as the pipeline registers
— All the registers are triggered by a same global clock
10

Tsung-Han Tsai




IF and ID of Iw

1D

[

nswcton ||
memory

10

11

EX of lw

\ Iw |
v { i \
i Execution
x
r 1
IFID ID/EX EX/MEM MEM/WB
Add result
Shift
left 2

Read
Address register 1 .
Py
Read - R
Instruction register 2
memor | Registers Read )
v Wite data 2 | Address Read 1
register ata L
Data
dan memory M
data >
16 32
v, | sign
extend

12

Tsung-Han Tsai




MEM and WB of Iw

| w

l Memory

™~

3

13

EX of sw

“xcz©

sSw

Execution

IF/D

EXIMEM

4 —|

Read
register 1

—=(PC Address

Read
register 2

Instruction

Instruction
memory
register

Write
data

Shift
left 2

Add
result

Add

Address

Write
data

Data
memory

MEM/WB

Oxcz~

Tsung-Han Tsai

14




MEM and WB of sSW
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Corrected Pipelined Datapath
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Multiple-Clock-Cycle Pipeline Diagram
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6.3 Pipeline Control
Add control to the pipelined datapath: Need to set the control
values during each pipeline stage
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Pipeline Control

* Pass control signals along just like the data

* We have 5 stages. What needs to be controlled in each stage?
Instruction Fetch and PC Increment
Instruction Decode / Register Fetch

— Execution
_ Memory Stage Instruction
— Write Back
IF/ID ID/EX EX/MEM MEM/WB
Execution/Address Calculation| Memory access stage | stage control
stage control lines control lines lines
Reg | ALU | ALU | ALU Mem | Mem | Reg |Memto
Instruction | Dst | Op1 | Op0 | Src |Branch| Read | Write | write | Reg
R-format 1 1 0 0 0 0 0 1 0
1w 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
begq X 0 1 0 1 0 0 0 X
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Datapath with Control: Fig.6.30
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Dependencies

+ Problem with starting next instruction before first is finished

— dependencies that “go backward in time” are data hazards
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Software Solution
+ Have compiler guarantee no hazards
* Where do we insert the “nops” ?
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)
* Problem: this really slows us down!
- Tsung-Han Tsai 22




Forwarding

* Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding

Time (in clock cycles)

cc1 CcCc2 ccs3 CcC4 CC5 CC6 ccr ccs cco
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sw $15, 100(52)

what if this $2 was $13?
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Forwarding
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Can't always forward

Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction that

writes to the same register.
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Thus, we need a hazard detection unit to “stall” the load instruction
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Stalling
*  We can stall the pipeline by keeping an instruction in the same
stage
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Hazard Detection Unit

Stall by letting an instruction that won’t write anything go
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Branch Hazards
*  When we decide to branch, other instructions are in the pipeline!
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+ We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong
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Flushing Instructions

- Tsung-Han Tsai 29

6.8 Improving Performance: Superscalar

* Superscalar: to replicate the internal components of the
computer so that it can launch multiple instructions in every
pipeline stage -> decrease CPI or increase IPC (Instructions Per
Cycle)

— start more than one instruction in the same cycle; Can we ?
— A 500 MHz four way superscalar CPU can execute a peak rate of two
billion instructions per second
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Dynamic Scheduling

* Dynamic pipeline scheduling: dynamic pipelining by the
hardware to avoid pipeline hazards
* The hardware performs the “scheduling”
— hardware tries to find instructions to execute
— out of order execution is possible
— speculative execution and dynamic branch prediction
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The Final Datapath and Control
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The Processor: Datapath & Control
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* All modern processors .
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