Chapter Six

- Tsung-Han Tsai

Pipelining

* Improve performance by increasing instruction throughput

— Multiple instructions are overlapped in execution
. 6 PM 7 8 9 10 11 12 1 2AM

f (e B m EE e e ey B |

Task
order

Multicycle : Sces 2 =
version ¢ @=L

6 PM 7 8 9 10 " 12 1 2AM

Time‘ﬁ T T T T \

Task

Pipeline orer
. A
Version

. ° 3

%. Tsung-Han Tsai

Pipelining

» Ideal speedup is number of stages in the pipeline. Do we achieve this?

— Example on Page 438. Pipelining improve throughput not execution time of

b an individual Ins.
rogram

execution 2 4

6

order Time T T
(in instructions)

Instruction
f

Iw $1, 100($0) ooy

Reg

Data

access

Reg

Iw $2, 200($0)

Iw $3, 300($0)

Program

execution 2 4

Instruction
fetch

Data

ALU
access

Reg

Reg

Tim
order e T T

(in instructions) .
Iw $1, 100(30) |'mstruction

fetch Reg

ALU

Data
access

Reg

Instruction

Iw $2,200($0) fetch

2ns

Reg

ALU

Data
access

Reg

D

Iw $3, 300($0) 2ns

Instruction

fetch

Reg

ALU

Data
access

Reg

2ns

Tsung-Han Tsai

Pipelining

What makes it easy (like MIPS)

— all instructions are the same length (some computers have Ins with

different length(bits))

— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?

— structural hazards: suppose we had only one memory

— control hazards: need to worry about branch instructions

— data hazards: an instruction depends on a previous instruction

+ We’ll build a simple pipeline and look at these issues

« We’ll talk about modern processors and what really makes it hard:

— exception handling

— trying to improve performance with out-of-order execution, etc.

Tsung-Han Tsai

Control Hazards in Pipelining :Branch case

Program
execution Ti 2 4 6 8 10 12 14 16
order ime T T T T T T T T
MethOd 1 Stall (in instructions)
.. Instruction Data
(Assume decision add$4,95,6 | feion Reg| ALU | cfocs |Reo
~ o 1 o i Data
can be made in beq 152,40 +——"0e Reg| A | P Reg
second stage Instruction Data
g) Iw $3, 300($0) e Tetch Reg[ALU | s |Re9
>
2ns
Program
execution 2 4 6 8 10 12 14
order Time T T T T T T T
(in instructions)
Instruction Data
add $4, $5, $6 fotch | R€9 A ol [Rea
e A i Data
beq $1, $2, 40 Reg ALU Reg
2ns fetch access
Iw $3, 300(S0) s N Reg A | D38 Reg I 1eth0d 2
2ns . e
Predicting
Program
execution) 2 4 6 8 10 12 14
order Time T T T T T T f
(in instructions)
Instruction Data
add $4, $5 ,$6 fetch Regl ALU access | Re9
eq $1. $2 40 In n Data
beq $1,62,40 «——w"0C | access Reg|
lnstrucnun Reg ALU a?:: Reg 5
s Tsai

Control Hazards in Pipelining :Branch case

Method 3: Delayed decision (used in MIPS)

Program
execution . 2 4 6 8 10 12 14
order Time T T T T T T : >
(in instructions)
beq $1, $2, 40 'ns;ruction Reg| ALU Data oo
etch access
add $4, 85, 66 «———{Instruction Reg| ALU Data | oo
(Delayed branch slot) 2 ns fetch access
Instruction Data
——»
83, 300(80) «2 ns fetch Regl AU 1 access [Re9
4+—>
2ns

Tsung-Han Tsai

Data Hazards in Pipelining:Forwarding

Program
execution 2 4 6 8 10
order Time T T T T T

Example: Add $s0, $t0, $t1 T i::;’:ﬁ‘(‘f;j;’ N
Sub $t2, $s0, $t3

i sub $t2, $s0, $t3

Program Time

execution
order

Example: Iw $s0 20($t1)
(in instructions)
Sub $t2, $SO, $t3 Iw $50, 20(8t1)

‘)’\/,;u‘/;b\\e:‘\%:ub ble) L/;L\/\I)\\e:l ‘(;urae?\‘t;\()z\\&
Example on P.447 Kv-eptv-egtv- o v catv-s

sub $t2, $s0, $t3

\
Read

Tsung-Han Tsai 7

Write

6.2 A pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access

/C

WB: Write back

ontrol

Hazard ?

\
Add s

resi

’\mri_.
AU py|
result Address Read 1

Shift
left 2

Single-cycle ata
datapath —— Hazard ?
* Why do we need to add to actually split the datapath into stages?

- Tsung-Han Tsai 8

Graphically Representing Single-Cycle

Instruction Execution

4

Time (in clock cycles)

el cc1 CCP, ccs3 cca ccs cce cc7
execution
order
(in instructions) ’\
[gk L

Iw $1, 100($0) 1] Rkg SAL DM Rkg

Iw $2, 200($0) 1" O Rkg B DM REg

Iw $3, 300($0) M [l Reg LA\) DM Reg
A4

* Place datapaths on a time line -> Can' hélp with answering

questions like:
— How many cycles does it take to execute this instruction?

— What is the ALU doing during cycle 4?

— The relationship among different instructions that are executed 9
- Tsung-Han Tsai
Pipelined Datapath
Instrktion % I 20 g
mepey [— T-* iy
g 5
* Pipeline registers are used to separate pipeline stage
— Each bus with n lines (n bits) use n D-FF as the pipeline registers
— All the registers are triggered by a same global clock
10

Tsung-Han Tsai

IF and ID of Iw

1D

[

nswcton ||
memory

10

11

EX of lw

\ Iw |
v { i \
i Execution
x
r 1
IFID ID/EX EX/MEM MEM/WB
Add result
Shift
left 2

Read
Address register 1 .
Py
Read - R
Instruction register 2
memor | Registers Read)
v Wite data 2 | Address Read 1
register ata L
Data
dan memory M
data >
16 32
v, | sign
extend

12

Tsung-Han Tsai

MEM and WB of Iw

| w

l Memory

™~

3

13

EX of sw

“xcz©

sSw

Execution

IF/D

EXIMEM

4 —|

Read
register 1

—=(PC Address

Read
register 2

Instruction

Instruction
memory
register

Write
data

Shift
left 2

Add
result

Add

Address

Write
data

Data
memory

MEM/WB

Oxcz~

Tsung-Han Tsai

14

MEM and WB of sSW

- Tsung-Han Tsai 15

Corrected Pipelined Datapath

0
M
u
x
1
IFID IDEX EXVEM MEVMB
—|
Add
4~V At A
it
iet2
Read
Address [[roster 1 Read
Read aat[|
Instuction regster 20 r
= Read| AU
menory B Wite a2l 0 resit Adtess Read
! register M &a
u Deta
Wite X menory
| e ;
Wite
| a
16 @
S -
extend,

- Tsung-Han Tsai 16

Multiple-Clock-Cycle Pipeline Diagram

Time (in clock cycles)

- L
TSUIY=11

2D o
TISut

e cC 1 cc2 cc3 cc4 cC5s ccé
execution
order — _ _
(in instructions)
Iw$10,2051) | 1M Reg |_| —[oM | —{ Rkg
sub $11, $2, $3 ™M — +HH Reg| | DM Reg
Program Time (in clock cycles) >
execution
order cC 1 cc2 cc3 cca cc 5 cce
(in instructions)
Instruction Instruction : Data .
e 3118, I fetch decode Execution access Write back
sub $11, $2, $3 Insftél{((::rt]ion Inggg&tjign Execution a(l:;)(?e‘zs Write back
- Tsung-Han Tsai 17
6.3 Pipeline Control
Add control to the pipelined datapath: Need to set the control
values during each pipeline stage
[\
L Address % : :::W JRosal_)
e 1 register ata2 [~
pcion @f_ 2\
s
L [15-11] A ‘x ‘\
ﬁCk

Pipeline Control

* Pass control signals along just like the data

* We have 5 stages. What needs to be controlled in each stage?
Instruction Fetch and PC Increment
Instruction Decode / Register Fetch

— Execution
_ Memory Stage Instruction
— Write Back
IF/ID ID/EX EX/MEM MEM/WB
Execution/Address Calculation| Memory access stage | stage control
stage control lines control lines lines
Reg | ALU | ALU | ALU Mem | Mem | Reg |Memto
Instruction | Dst | Op1 | Op0 | Src |Branch| Read | Write | write | Reg
R-format 1 1 0 0 0 0 0 1 0
1w 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
begq X 0 1 0 1 0 0 0 X
- Tsung-Han Tsai 19
Datapath with Control: Fig.6.30
x e
: v I_.f mEM/WB

IF/ID

Ry

2

4

Address

Instruction
memory

1 I Instruction

Read
register 1 Read
Read data 1
register 2

Registers Read
Write

|
|
"] register

Write

"] data

Instruction
[5-0] 18

extend

Instruction
[20-16]

32
Sign

Instruction

Read
Address s T
Data

memory

Write
data

wB|

Tsung-Han Tsai

20

Dependencies

+ Problem with starting next instruction before first is finished

— dependencies that “go backward in time” are data hazards
Time (in clock cycles)

Valueof CC1 cc2 cc3 cc4 ccs cce cc7 ccs cco
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program
execution
order

(in instructions) M M
sub $2, $1, $3 '@ll.’
S

or $13, $6, 52 IE—

1 CX

o

Ty
)
o

— J ’ I ﬂrl =

l/

] [
[

.
@"r.
[
o
.

add $14, $2, 2

- Tsung-Han Tsai 21
Software Solution
+ Have compiler guarantee no hazards
* Where do we insert the “nops” ?
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)
* Problem: this really slows us down!
- Tsung-Han Tsai 22

Forwarding

* Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding

Time (in clock cycles)

cc1 CcCc2 ccs3 CcC4 CC5 CC6 ccr ccs cco

Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EX'MEM : X X X -20 X X X X X
Value of MEM/WB : X X X X -20 X X X X

Program
execution order
(in instructions)

or $13, $6, 52

add $14, 52, $2

sw $15, 100(52)

what if this $2 was $13?
Tsung-Han Tsai

23

Forwarding

NIV B

EEEE

—
c M
£ Y
o X
H g =
@ isters
Instruction = AL Data -
PC M ™ memory
——
M
> u
|
IF/ID.RegisterRs 1
IF/ID.RegisterRt

IF/ID.RegisterRt

J IF/ID.RegisterRd

EX/MEM RegisterRd

Forwarding ‘—l . _—|
it :7 MEMMWB RegisterRd

\

2 2|z|a=

- Tsung-Han Tsai

24

Can't always forward

Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction that

writes to the same register.

Time (in clock cycles)

Program cc2
execution
order

(in instructions)
Iw $2, 20($1)

cc1

cc3

and $4, $2, $5

or $8, 52, $6

add $9, $4, 52

slt$1, $6, $7

CCs

cc7

ccs

cco

Thus, we need a hazard detection unit to “stall” the load instruction

- Tsung-Han Tsai 25
Stalling
* We can stall the pipeline by keeping an instruction in the same
stage
Program Time (in clock cycles)
e:(;ewﬁon CC1 CC2 CC3 CC4 CC5 CC6 CC7 CcCcs8 CcCc9 CC10
:
?ininsh'udions) —
I $2, 20($1) m I-@-I-’
J om
and $4, 52, $5 m I'@n[@ Reg
i
or $8, 52, $6 m % m
i i
$9, $4, $
wonss HE A DHI
slt$1, $6, $7 g ’ I I
=) =

Tsung-Han Tsai

Hazard Detection Unit

Stall by letting an instruction that won’t write anything go

Tsung-Han Tsai

forward /[a; \ ID/EX MemRead
€ —LEX/MEM
hE e
IFID M WB—)
) B Registers .
H e m T
IF/ID.RegisterRs.]
IF/ID.RegisterRt
IF/ID.RegisterRt Rt| EXMEMRegisterRd
IF/ID.RegisterRd Rd :
o ID/EX RegisterRt * R JU‘(Forwarding .;l meegﬁmf—l
R | ;
- Tsung-Han Tsai 27
Branch Hazards
* When we decide to branch, other instructions are in the pipeline!
Program Time (in clock cycles)
gszrnion CC1 CC2 CC3 CC4 CC5 CC6 Ccc7 Cccs CC9
(in instructions)
40beq $1, 83, 7 m I-@II-’ ~|:|D"‘ @
ahand $12, 2,85 (] IE #} e
U L Ll
b |
U L LI U
52 add $14, $2, $2 @— % M I a
=0 =
—— > I |r =
L. L i
+ We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong
i 28

Flushing Instructions

- Tsung-Han Tsai 29

6.8 Improving Performance: Superscalar

* Superscalar: to replicate the internal components of the
computer so that it can launch multiple instructions in every
pipeline stage -> decrease CPI or increase IPC (Instructions Per
Cycle)

— start more than one instruction in the same cycle; Can we ?
— A 500 MHz four way superscalar CPU can execute a peak rate of two
billion instructions per second

D R-type;Beq

g ’ D Iw; sw

Registers

Dynamic Scheduling

* Dynamic pipeline scheduling: dynamic pipelining by the
hardware to avoid pipeline hazards
* The hardware performs the “scheduling”
— hardware tries to find instructions to execute
— out of order execution is possible
— speculative execution and dynamic branch prediction

Instruction fetch
and decode unit

In-order issue

I
v ! v v

Reservation Reservation Reservation Reservation
station station station station
Functional Floating Load/ .y
it e e point Store Out-of-order execute

A 2

In-order commit
Commit

- et

Tsung-Han Tsai

31

The Final Datapath and Control

140000040

Etww

Instruction
memory

register 2 =
Registers

|Address

Read|
data[—|

register Read
te data
|data

| Instruction

15@ 32

Instruction [25_21
Instruction [20_16]
Instruction [20_16]

U HEE U

Tsung-Han Tsai

32

The Processor: Datapath & Control

oo cache
* All modern processors .
L

are Very compl icated p;Ber;nclﬁZn Instruction queue
- DEC Alpha 21264 9 Register file

-
stage pipeline, 6

instruction issue

Reservauon Reservauon Reservauon Reservation Reservation
station station station station station

— PowerPC and l | l l | - ”

Reservation
station

Pentium: branch
history table
Store
Branch Integer Integer FI;:I:_"?Q (?:(:g!eerx

Commit
unit

Reorder
buffer

- Tsung-Han Tsai 33

