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Chapter Five
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• We're ready to look at an implementation of 
the MIPS

• Simplified to contain only:
– memory-reference instructions:  lw, sw
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:
– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the 
registers

The Processor:  Datapath & Control
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5.1 Introduction
• The Five Classic

Components of a Computer
• An abstract view of major

functions of MIPS is shown
in Fig.5.1. Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)
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Instruction ALU

Instruction
memory
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The Big Picture: The Performance Perspective

• Performance of a machine is determined 
by:
– Instruction count
– Clock cycle time
– Clock cycles per instruction

• Processor design (datapath and control) 
will determine:
– Clock cycle time
– Clock cycles per instruction

• Today:
– Single cycle processor:

• Advantage: One clock cycle per instruction
• Disadvantage: long cycle time

CPI

Inst. Count Cycle Time
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• Unclocked (seldom used) vs. Clocked state elements
• Output is equal to the stored value inside the element

(don't need to ask for permission to look at the value)
• Clocks are used in synchronous logic 

– when should an element that contains state be updated?
– Change of state (value) is based on the clock
– Latches:  whenever the inputs change, and the clock is asserted
– Flip-Flop:  state changes only on a clock edge

(edge-triggered methodology)

cycle time rising edge
falling edge

5.2 State Elements: Latches and Registers
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• D-latch (6.3.3 of Digital Logic)
– Two inputs:

• the data value to be stored (D)
• the clock signal (C) indicating when to read & store D

– Two outputs:
• the value of the internal state (Q) and it's complement

D-latch and D-register
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• Built using D flip-flops

Register File

M
u
x
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Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements, 
– send values through some combinational logic
– write results to one or more state elements

Clock cycle

State

element


1
Combinational logic

State

element


2
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5.2 Building a Datapath

• Adder

• MUX

• ALU

Carry out
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• N-bit Register
– Consist of N D Flip-Flop
– N-bit input and output
– Write Enable:asserted (1): 

Data Out will become Data 
In

Clk

Data In

Write Enable

N N
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Clocking Methodology

• All storage elements are clocked by the same clock 
edge

• Cycle Time = CLK-to-Q + Longest Delay Path + 
Setup + Clock Skew

• (CLK-to-Q + Shortest Delay Path - Clock Skew)  >  
Hold Time

Clk

Don　 Care
Setup Hold
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Storage Element: Idealized Memory

• Memory (idealized)
– One input bus: Data In
– One output bus: Data Out

• Memory word is selected by:
– Address selects the word to put on Data Out
– Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Address valid => Data Out valid after Access 

time.
• Fig.5.4a show the abstraction of instruction 

memory and Fig.5.8a shows abstraction for data 
memory

Data In

Write Enable

32 32
DataOut

Address
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Storage Element: Register File

• Register File consists of 32
registers:
– Two 32-bit output busses:

busA and busB
– One 32-bit input bus: busW

• Register is selected by:
– RA (number) selects the register to put on busA (data)
– RB (number) selects the register to put on busB (data)
– RW (number) selects the register to be  written

via busW (data) when Write Enable is 1
• Clock input (CLK) 

– The CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational 

logic block:
• RA or RB valid => busA or busB valid after Access time.

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRARB

32 32-bit
Registers
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• A portion of the 
datapath used for 
fetching INS and 
incrementing the 
PC:Fig.5.5

• The datapath for 
R-type Ins : 
Fig.5.7

Some Simple Examples
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• The datapath for Load and
Store Ins :Fig.5.9

• The datapath for a branch
operation: Fig.5.10

Some Simple Examples 
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5.3 A Simple Implementation Scheme

• Example: P351 ;Use multiplexors to select different data for an 
input of a block

• Fig.5.11, Fig.5.12 and Fig.5.13 show a step-by-step construction

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

16Tsung-Han Tsai

ALU Control

• Selecting the operations to perform (ALU, 
read/write, etc.)

• Controlling the flow of data (multiplexor inputs)
• Information comes from the 32 bits of the 

instruction
• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct
• ALU's operation based on instruction type and 

function code
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• Example:  lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

ALU Control
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• Must describe hardware to compute 3-bit ALU 
conrol input
– given instruction type 

00 = lw, sw
01 = beq, 
10 = arithmetic

– function code for arithmetic
• Describe it using a truth table (can turn into gates):

ALUOp
computed from instruction type

Control

Instruction ALUOp Funct field
opcode ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0
LW or SW 0 0 X X X X X X
Branch Equal 0 1 X X X X X X
R-type(add) 1 X X X 0 0 0 0
R-type(subtract) 1 X X X 0 0 1 0
R-type(AND) 1 X X X 0 1 0 0
R-type(OR) 1 X X X 0 1 0 1
R-type(set on less) 1 X X X 1 0 1 0
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Control Circuits

• Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

R -format Iw sw beq
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RegD st
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M emtoReg
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B ranch

A LUOp1

A LUOpO



21Tsung-Han Tsai

• All of the logic is combinational
• We wait for everything to settle down, and the right 

thing to be done
– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to 

write

• Cycle time determined by length of the longest path

Our Simple Control Structure

Clock cycle

State

element


1
Combinational logic

State

element


2
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The four steps of R-type Ins (Fig.5.21,22,23,24)
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The five steps of lw Ins (Fig.5.25)
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The three steps of beq-type Ins (Fig.5.26)
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Single Cycle Implementation

• Calculate cycle time assuming negligible delays in 
line and other small blocks except:
– memory (2ns), ALU and adders (2ns), register file  (1ns)
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Where we are headed: 5.4 Multicycle Approach

• Single Cycle Problems:
– What if we had a more complicated instruction like floating 

point operation? ->The cycle time must consider worst case
– wasteful of area , Example : one ALU + 2 adders

• Multicycle Solution:
– use a “smaller” cycle time

• break up the instructions into steps, each step takes a cycle
• balance the amount of work to be done
• have different instructions take different numbers of cycles 

– restrict each cycle to use only one major functional unit
• At the end of a cycle stores values for use in later cycles (easiest thing 

to do)
• A “multicycle datapath”: reusing functional units (1)ALU used to compute 

address and to increment PC (2)Memory used for instruction and data
• Must introduce additional “internal” registers
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• Our control signals will not be determined solely by instruction
• At the end of a clock cycle, all data that are used in subsequenct

clock cycles must be stored in register

Multicycle Approach (Registers shall be added)
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Multicycle Approach (Multiplexor is added)
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Multicycle with necessary controls
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• Instruction Fetch
• Instruction Decode and Register Fetch
• Execution, Memory Address Computation, 

or Branch Completion
• Memory Access or R-type instruction 

completion
• Write-back step

INSTRUCTIONS TAKE FROM 3 INSTRUCTIONS TAKE FROM 3 -- 5 CYCLES!5 CYCLES!

Five Execution Steps
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• Use PC to get instruction and put it in the Instruction 
Register.

• Increment the PC by 4 and put the result back in the 
PC.

• Can be described succinctly using RTL "Register-
Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch
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• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction 

is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

• We aren't setting any control lines based on the 
instruction type (we are busy "decoding" it in our 
control logic)

Step 2:  Instruction Decode and Register Fetch
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• ALU is performing one of three functions, based on 
instruction type
– Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);
– R-type:

ALUOut = A op B;
– Branch:

if (A==B) PC = ALUOut;

Step 3 Execution (instruction dependent)
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• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;
• R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the 
cycle on the edge

Step 4 R-type or memory-access
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• Reg[IR[20-16]]= MDR;

Step 5 Write-back step
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Summary:

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and 
$t3 takes place?

Simple Questions
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• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a 
finite state machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

Implementing the Control
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• Finite state machines:
– a set of states and 
– next state function (determined by current state and the 

input)
– output function (determined by current state and possibly 

input)

– We’ll use a Moore machine (output based only on current state)

Review:  finite state machines

Next-state

functionCurrent state

Clock

Output

function

Next

state

Outputs

Inputs

• How many 
state bits 
will we 
need?

Graphical Specification of FSM
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• Implementation:

Finite State Machine for Control
PCW rite

PCW riteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegW rite
RegDst

NS3
NS2
NS1
NS0

O
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O
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O
p3

O
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O
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O
p0

S3 S2 S1 S0

State register

IRW rite

MemRead
MemW rite

Instruction register

opcode field

Outputs

Control logic

Inputs
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Programmable Logic Array (PLA) 
Implementation
• If I picked a horizontal or vertical line could you 

explain it? Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

For example:

PCWrite=

32103210 ssssssss +
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• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the 

ROM.
– our outputs are the bits of data that the address points to.

m is the "heigth", and n is the "width"

ROM Implementation

m n
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

Address Data

Input  Output
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• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines

(i.e., 210 = 1024 different addresses)
• How many outputs are there?

16 datapath-control outputs, 4 state bits = 20 
outputs

• ROM is 210 x 20 = 20K bits    (and a rather unusual 
size)

• Rather wasteful, since for lots of the entries, the 
outputs are the same

— i.e., opcode is often ignored

ROM Implementation
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• Break up the table into two parts
— 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM
— Total:  4.3K bits of ROM

• PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs ´ #product-terms) + (#outputs ´
#product-terms)
For this example  =  (10x17)+(20x17) = 460 PLA cells

• PLA cells usually about the size of a ROM cell 
(slightly bigger)

ROM vs PLA

46Tsung-Han Tsai

5.5 Microprogramming:Simplifying Control Design
• Control is the hard part of processor design

?Datapath is fairly regular and well-organized
?Memory is highly regular
?Control is irregular and global

• Microprogramming: Designing the control as a program 
that implements the machine instructions in terms of 
simpler microinstructions at the level of register transfer 
operations
– Think of the control operation as to issue set of control signals (in 

sequence) that must be asserted in a state as an 
“microinstruction” to be executed by the datapath.

– Executing a microinstruction has the effect of asserting the 
control signals specified by the microinstruction

• A microinstruction is represented as a sequence of fields 
whose functions are related (example: Fig.5.44)
– Usually placed in a ROM or a PLA (have address)
– Three methods to choose next microINS; P.401

• A microprogram is a symbolic representation of the 
control that will be translated by a program to control 
logic



Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.
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Microprogramming
PCW rite
PCW riteCond
Io rD

M em toReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegW rite

AddrC tl

O utpu ts

Microcode mem ory

IRW rite

M em Read
M em W rite

RegDst

Control unit

Input

M icroprogram  counter

Address se lect logic

O
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Instruction reg is ter
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• Complex instructions:  the "next state" is often 
current state + 1

Another Implementation Style

AddrCtl

Outputs

PLA or ROM

State

A ddress select log ic

O
p[

5–
0]

Adder

Instruction reg ister

opcode field

1

Contro l un it

Input

PCW rite
PCW riteCond
IorD

Mem toReg
PCSource
ALUOp
ALUS rcB
ALUS rcA
RegW rite
RegDst

IRW rite

Mem Read
Mem W rite

BW rite
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Details

Dispatch ROM 2
Op Opcode name Value

100011 lw 0011
101011 sw 0101

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register

opcode field

Dispatch ROM 1
Op Opcode name Value

000000 R-format 0110
000010 jmp 1001
000100 beq 1000
100011 lw 0010
101011 sw 0010
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• No encoding:
– 1 bit for each datapath operation
– faster, requires more memory (logic)
– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
– send the microinstructions through logic to get control 

signals
– uses less memory, slower

• Historical context of CISC:
– Too much logic to put on a single chip with everything else
– Use a ROM (or even RAM) to hold the microcode
– It’s easy to add new instructions

Maximally vs. Minimally Encoded
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Microcode:  Trade-offs

• Specification Advantages:
– Easy to design and write
– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages
– Easy to change since values are in memory
– Can emulate other architectures
– Can make use of internal registers

• Implementation Disadvantages,  SLOWER now  that:
– Control is implemented on same chip as processor
– ROM is no longer faster than RAM
– No need to go back and make changes
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