
1Tsung-Han Tsai

Chapter Four

2Tsung-Han Tsai

4.1 Arithmetic

• Where we've been:
– Performance (seconds, cycles, instructions)
– Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

• What's up ahead:
– Number system in computer
– Implementing the arithmetic architecture

32

32

32

operation

result

a

b

ALU

3Tsung-Han Tsai

• Bits are just bits (no inherent meaning)
– conventions define relationship between bits and numbers

• Binary numbers (base 2): with each digit d of 0 and 1
– 0000 0001 0010 0011 0100 0101 0110 0111 (32 bits)

decimal value can be 0...2n-1; see example in p.211
• Of course the real case is more complicated:

– fixed point numbers that represent integer are finite: overflow
may occur

– Floating point numbers can represent real numbers
– negative numbers: Sign Magnitude, One's Complement,Two's Complement

e.g., no MIPS subi instruction; addi can add a negative number)
• How do we represent negative numbers?

i.e., which bit patterns will represent which numbers?

4.2 Numbers

4Tsung-Han Tsai

• The concept of sign bit
• Sign Magnitude: One's Complement Two's Complement

000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Issues: balance, number of zeros, ease of operations
• Which one is best? Why?
• The value represented by two’s complement with n bits

Possible Negative Number Representations

i
n

i
i

n
n bb 2)2(

2

0

1
1 ×+−× ∑

−

=

−
−

5Tsung-Han Tsai

• 32 bit signed numbers:
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

• unsigned integer: address
– slt, slti ; unsigned version :sltu, sltiu
– Example: P215

maxint
minint

32 bits in MIPS

6Tsung-Han Tsai

• Negating a two's complement number: invert all bits and add 1

– remember: “negate” and “invert” are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits: "sign
extension"

0010 -> 0000 0010(+2)
– 1010 -> 1111 1010 (-6)

• Fig.4.2 for MIPS assembly language with unsigned operation

Two's Complement Operations

7Tsung-Han Tsai

• Just like in grade school (carry/borrow 1s), unsigned number
0111 0111 0110

+ 0110 - 0110 - 0101
1101 0001 0001

• Two's complement operations easy
– subtraction using addition of negative numbers: 7-6=7+(-6)

0111
+ 1010

0001
• Overflow (result too large for finite computer word):

– e.g., adding two n-bit numbers does not yield an n-bit number
0111

+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”-> The overall

result is wrong

4.3 Addition & Subtraction

8Tsung-Han Tsai

9Tsung-Han Tsai

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction

• Overflow occurs when the value affects the sign:
– overflow when adding two positives yields a negative
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

• Effects of Overflow
– An exception (interrupt) occurs

• Control jumps to predefined address for exception
• Interrupted address is saved for possible resumption

– Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu
note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Detecting Overflow

111111:bit overflow with −−−−−− +=+= nnnnnn sbasbaOBAS

10Tsung-Han Tsai

• Logic operation:
– Shift left (<<) : sll, shift right (>>) : srl
– bit-by-bit AND (&) : and, andi, Bit-by-Bit OR (|) (bitwise

operation): or, ori
• A general logic or (control) problem : Consider a logic function with

three inputs: A, B, and C.
Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

– Show the truth table for these three functions.
– Show the Boolean equations for these three functions.
– Show an implementation consisting of inverters, AND, and OR

(fig.4.8) gates or only NAND gates

4.4 Boolean Algebra & Gates

11Tsung-Han Tsai

• Review the operation of Multiplexor: Selects one of the inputs to be the
output, based on a control input : If s=0, c=a or s=1, c=b

• Let's build an 32-bits ALU to support the andi, ori and add instructions
– we'll just build a 1 bit ALU, and use 32 of them
– Let's first look at a 1-bit ALU for addition:

4.5 An ALU (arithmetic logic unit)

S

C
A
B

note: we call this a 2-input mux
even though it has 3 inputs!

ALUALU
A B

m
ovf

S

32 32

32

3Cout
zero

A simplified
ALU

12Tsung-Han Tsai

13Tsung-Han Tsai

1-bit Adder and 1-bit ALU

Sum

C arryIn

C arryO u t

a

b

CarryIn A B AB[G] A+B[P] A⊕ B SUM CarryOut

0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0

0 1 0 0 1 1 1 0

0 1 1 1 1 0 0 1

1 0 0 0 0 0 1 0

1 0 1 0 1 1 0 1

1 1 0 0 1 1 0 1

1 1 1 1 1 0 1 1

• cout = a b + a cin + b cin
• sum = a xor b xor cin

b

CarryOut

a

CarryIn

b

0

2

R e s u l t

O p e r a t io n

a

1

C a r r y I n

C a r r y O u t

2

14Tsung-Han Tsai

Building a 32 bit ALU

R e su lt31
a3 1

b3 1

R e su lt0

C arryIn

a0

b0

R e su lt1
a1

b1

R e su lt2
a2

b2

O pe rat io n

A LU 0

C arry In

C arryO u t

A LU 1

C arry In

C arryO u t

A LU 2

C arry In

C arryO u t

A LU 3 1

C arry In

• A 32 bit ALU constructed from 32
1-bit ALUs

• What about subtraction (a – b) ?
– Two's complement approch:

just negate b and add.
– How do we negate?

A very clever solution:

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

2

15Tsung-Han Tsai

• Need to support the set-on-less-
than instruction (slt)

– remember: slt is an arithmetic
instruction

– produces a 1 if rs < rt and 0
otherwise

– use subtraction: (a-b) < 0
implies a < b

• Need to support test for equality
(beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0
implies a = b

Tailoring the ALU to the MIPS
0

3

R esult

O p era tion

a

1

C arryIn

C arryO u t

0

1

B inve rt

b 2

L ess

0

3

R esu lt

O p eration

a

1

C ar ryIn

0

1

B in ve rt

b 2

Le ss

S e t

O ve rflo w

de tec tion O ve rflow

a.

b.

16Tsung-Han Tsai

S et
a3 1

0

A L U 0 R esu lt0

C a rryIn

a0

R esu lt1
a1

0

R esu lt2
a2

0

O p era tio n

b3 1

b0

b1

b2

R esu lt31

O v e rflo w

B in ve rt

C a rry In

Le ss

C a rryIn

C a rryO u t

A L U 1
Le ss

C a rryIn

C a rryO u t

A L U 2
Le ss

C a rryIn

C a rryO u t

A L U 31
Le ss

C a rryIn

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Critical Path of n-bit Rippled-carry
adder is n*Tcarryout

17Tsung-Han Tsai

Test for equality

• Notice of control lines:

000 = and
001 = or
010 = add
110 = subtract (beq)
111 = slt

•Note: zero is a 1 when the result is zero!

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

18Tsung-Han Tsai

Conclusions

• We can build an ALU to support the MIPS instruction set
– key idea: use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
– In today’s 0.18 um CMOS technology: 2 inputs NAND (NOR)gate:0.14 ns

• Our primary focus: comprehension, however,
– Clever changes to organization can improve performance

(similar to using better algorithms in software)
– we’ll look at two examples for addition and multiplication

19Tsung-Han Tsai

• Is a 32-bit ALU as fast as a 1-bit
ALU?

• Is there more than one way to
do addition?
– two extremes: ripple carry

and sum-of-products
Can you see the ripple? How

could you get rid of it?
c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1
c3 = b2c2 + a2c2 + a2b2
c4 = b3c3 + a3c3 + a3b3

Not feasible! Why?

Problem: ripple carry adder is slow->
Carry-lookahead adder

• Motivation:
– If we didn't know the value of

carry-in, what could we do?
– When would we always

generate a carry? gi = ai bi
– When would we propagate the

carry? pi = ai + bi
• Did we get rid of the ripple?
c1 = g0 + p0c0
c2 = g1 + p1c1
c3 = g2 + p2c2
c4 = g3 + p3c3

Feasible! Why?
)))(((000112233

0012301231232334

 00120121223

0010112

0001

cpgpgpgpg
cppppgpppgppgpgC

cpppgppgpgC
cppgpgC

cpgC

++++=
++++=

+++=
++=

+=

20Tsung-Han Tsai

Plumbing as Carry Lookahead Analogy

p0

c0
g0

c1

p0

c0
g0

p1
g1

c2

p0

c0
g0

p1
g1

p2
g2

p3
g3

c4

21Tsung-Han Tsai

One-Level Carry-lookahead adder

) of instead (

..............=....... so

 ...
 signal, ...p

)(

00111

i

1

iiiiiiiiiii

iiiiiiiii

iii

ii

iiiiiiiii

babappcbacsand

cpppgpgcpgc

signalgenerationbag
npropagatiobawhere

pcgbacbaC

+⊕=⊕=⊕⊕=

+++=+=

=
+=

+=++=

−−+

+

22Tsung-Han Tsai

• Can’t build a 16 bit adder this way... (too big)
• Could use ripple carry of 4-bit CLA adders
• Better: use the CLA principle again!

Use principle to build bigger adders
CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

Carry-lookahead unit

23Tsung-Han Tsai

2nd level Carry, Propagate as Plumbing

p0
g0

p1
g1

p2
g2

p3
g3

G0

p1

p2

p3

P0

24Tsung-Han Tsai

• More complicated than addition
– accomplished via several shifting and addition oprations

• More cycle time and more area as compared to adder
• Let's look at 3 versions based on grade school algorithm

0010 (multiplicand)
__x_1011 (multiplier)

0010
• 0010
• 0000
• 0010
• 0010110
• Negative numbers: convert and multiply

– there are better techniques, we won’t look at them

4.6 Multiplication

25Tsung-Han Tsai

Multiplication: Implementation

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

26Tsung-Han Tsai

Second Version

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test

Multiplier0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

27Tsung-Han Tsai

Final Version

Control

testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

Done

1. Test

Product0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

28Tsung-Han Tsai

Divider

29Tsung-Han Tsai

Fig 4.39

30Tsung-Han Tsai

Fig 4.40 & 4.41

31Tsung-Han Tsai

Floating Point (a brief look)

• We need a way to represent
– numbers with fractions, e.g., 3.1416
– very small numbers, e.g., .000000001
– very large numbers, e.g., 3.15576 ∗ 109

• Scientific notation:
– Base 10: 1.0*10-9, 0.1*10-8, 3.15576 ∗ 109, 31.5576*108

• No leading 0s is called a normalized number

• Scientific notation in binary number: a = 0.11*21 (= 1.5) = (-
1)s*F*2E , where s = 0, F=0.11, E = 1 and . is called binary point; (sign
bit;F;E)
– sign, exponent (E), significand (F): (–1)sign *significand* 2exponent

– a = 0.11*21 is called the floating point notation where floating
point means the position of floating point is not fixed.

– The more bits for significand gives more accuracy
– more bits for exponent increases range

32Tsung-Han Tsai

IEEE 754 floating-point standard
• IEEE 754 floating point standard:

– single precision: 1 bit for sign, 8 bit exponent, 23 bit significand

– double precision: 1 bit for sign, 11 bit exponent, 52 bit significand

• Leading “1” bit of significand is implicit
• Exponent is “biased” to make sorting easier

– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– range of floating-point: (–1)sign x (1+significand)2 x 2exponent – bias

– If significant equals s1s2s3,… -> (–1)sign x (1+s1 x2-1 +s2 x2-2 ...) x
2exponent – bias

• Overflow and underflow can still occur

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

s e x p o n e n t s ig n i f ic a n d

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

s e x p o n e n t s ig n i f ic a n d

Significand (continued;32 bits)

33Tsung-Han Tsai

IEEE 754 Floating-Point Representation

• Example:
– decimal: -.75 = -3/4 = -3/22

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110
– IEEE single precision: 10111111010000000000000000000000

• Example P.280
• Floating-point addition: Example: the four steps in P.281

 x = (s,F, E) = (-1)s(1+F)*rE with)bits (23 , 111 F : prF
r

p <−≤≤ −

 bits (8) , 10 E : qrE q −≤≤

 Addition :




≤±
>−±−

=±
−−

−−

 212),2
)(

1

211
)(

21
222111)*((

)),*)1()1(((
),,(),,(

21

21

EEifEFrF
EEifErFF

EFsEFs
EE

EE

 radix point of x1, x2 must be aligned => shifting the mantissa with a smaller exponent |e1-e2| places to the right.
 Normalize the sum
 Round the significant to the appropriate number of bits

34Tsung-Han Tsai

Flow Chart of
Floating-Point Addition

Done

2. Add the significands

4. Round the significand to the appropriate

number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or

underflow?

Exception

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

1. Compare the exponents of the two numbers.

Shift the smaller number to the right until its

exponent would match the larger exponent

35Tsung-Han Tsai

0 10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent

difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or

decrement

0 10 1

Shift smaller

number right

Compare

exponents

Add

Normalize

Round

Block Diagram
of Floating-
Point Addition

36Tsung-Han Tsai

Floating point Multiplication

• Example: Step 1 to Step 5 in p.283 to P.286

 FLP multiplication and division :

),/,(),,/(),,(),,(

),*,(),,(*),,(),,(

212121222111

212121222111

biasEEFFssEFsEFsEFs
biasEEFFssEFsEFsEFs

+−⊕==

−+⊕==

 F1*F2 and E1+E2 -bias can be executed simultaneously.
 The same amount of execution time as corresponding FXP operation.







≠≥+<≤

<<<
<≤









−⇒<≤

<≤
<≤

− 021)1,*(:/1

 21 :1/1
/1

)1,*(1*1

 :1*1

1*1

1
21

21
21

21
2

21

21
2

Fwhen FErFrFF

FFwhenokFF
rrFF

r

EFr
r

FF
r

okFF
rFF

r

37Tsung-Han Tsai

Flow Chart of
Floating-Point
Multiplication

2. Multiply the significands

4. Round the significand to the appropriate

number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or

underflow?

Exception

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

Done

5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

38Tsung-Han Tsai

MIPS Floating-point Operation

• MIPS supports the IEEE 754 single-precision and double-precision
formats
– add.s, add.d; sub.s, sub.d
– mul.s, mul.d;div.s,div.d
– Comparison Ins: c.x.s or c.x.d where x can be eq, neq, lt, le, gt, ge

• Sets a bit to true or false
– Floating branch: true (bclt) and false (bclf)

• Have separate 32 floating-point register: $f0, $f1, $f2…$f31
– Each has 32 bits andare used in pairs for double precision

numbers
– Loads and stores for floating-point registers: lwc1 and swc1
– Example: P288

• Summary: Fig.4.47 on P.291
• Example: P.293

39Tsung-Han Tsai

Floating Point Complexities

• Operations are somewhat more complicated than integer operation
• In addition to overflow we can have “underflow”
• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round: example in P.297
– four rounding modes
– positive divided by zero yields “infinity”
– zero divide by zero yields “not a number”
– other complexities

• C data types and MIPS Ins for them : see table on p.299
• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

40Tsung-Han Tsai

Chapter Four Summary

• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist

– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of the bit patterns
• Performance and accuracy are important so there are many

complexities in real machines (i.e., algorithms and implementation).
• We are ready to move on (and implement the processor)

