
1Tsung-Han Tsai

Chapter 3
All figures from Computer Organization and Design: The Hardware/ Software Approach, Second
Edition, by David Patterson and John Hennessy, are copyrighted material. (COPYRIGHT 1998
MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED.)

Figures may be reproduced only for classroom or personal educational use in conjunction with the
book and only when the above copyright line is included. They may not be otherwise reproduced,
distributed, or incorporated into other works without the prior written consent of the publisher.

2Tsung-Han Tsai

3.1 Computer (machine) Language:

• Language of the Machine is called instructions
– Its vocabulary is called an instruction set

• More primitive than human languages
– no sophisticated control flow
– Very restrictive: e.g., MIPS Arithmetic Instructions
– machine languages are quite similar: there are mainly three types

of language
• High level language: C, Pascal, Fortran etc., portable
• Low level language: assembly language, hardware oriented
• Artificial Language: Prolog, Lisp

• Design goals of computer language : maximize performance and minimize
cost, reduce program design time

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

3Tsung-Han Tsai

3.2 MIPS Arithmetic Instruction

• Each instruction performs only one operation
– It may not be true for other language

• All instructions have 3 operands
• Operand order is fixed (destination first)

– Example:

C code: a = b + c;
MIPS code: add a,b,c

• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things…

– C code: a = b + c + d;
e = f - a;

MIPS code: add a, b, c
add a, a, d
sub e, f, a

• Do the examples in p108 109

4Tsung-Han Tsai

3.3 Operands of MIPS

• Operands must be registers and can not be any variable in the
memory
– only 32 registers word are provided in MIPS and each

register word is 32 bits
– Register is the D register that you learn in “數位系統導論”

• Design Principle: smaller is faster. Why?
– More registers are convenient for programmer but more

complicated for hardware designer (Time and complexity)
• $s1, $s2 for registers that correspond to variables in C and

$t0, $t1 for temporary registers needed to compile
– Do example in p.110

• What about programs with lots of variables ?

5Tsung-Han Tsai

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,
— only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables

6Tsung-Han Tsai

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

7Tsung-Han Tsai

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

8Tsung-Han Tsai

Memory Organization

• MIPS includes data transferdata transfer instructions that transfer data between
memory and registers

• Load and store instructions
– Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0
sw $t0, 32($s3)

Note: $s3 store the address of A[0]
• Store word has destination last
• Remember arithmetic operands are registers, not memory!

– Do example in p.112 and 113

9Tsung-Han Tsai

5.1 Introduction
– The Five Classic

Components of a Computer
– An abstract view of major functions

of MIPS is shown
– in Fig.5.1. Two types of functional units:

• elements that operate on data values (combinational)
• Elements that contain state (sequential)

Control

Datapath

Memory

Processor
Input

Output

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC

Instruction ALU

Instruction
memory

Address

Control (Decoder)

Processor

10Tsung-Han Tsai

Memory Organization
• "Byte addressing" means that the index points to a byte of memory.

– 8-bit bytes are useful
– a word occupy 4 bytes
– address of sequential words differ by 4

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Data access are faster and useful if data is kept in register instead of

memory
– This is due to RC delay and arithmetic instruction can read two

register
– To achieve highest performance, MIPS compilers must use

register efficiently
• Summary : Fig.3.4

6

0

1

2

3

4

5

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

1 0 0

1 0

1 0 1

1

1 2

8

4

0

D a t aA d d r e s s

M e m o r yP r o c e s s o r

11Tsung-Han Tsai

Our First Example

• Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

12Tsung-Han Tsai

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

13Tsung-Han Tsai

14Tsung-Han Tsai

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

}

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

*Note: $5 stores k and $4
stores the address of v[0]

15Tsung-Han Tsai

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers ⇒ $t0 to $t7: registers 8 to 15; $s0 to $s7:

register 16 to 23
• Instruction Format of machine language

000000 10001 10010 01000 00000 100000
op rs rt rd shamt funct
6 bits 5bits 5bits 5bits 5bits 6 bits

• Each machine code has exactly 32 bits
– there are six fields in R-type instruction
– Can you guess what the field names stand for?

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do? 5 bits for constant in

this type of Ins ?
– New principle: Good design demands a compromise

3.4 Machine Language

16Tsung-Han Tsai

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language

17Tsung-Han Tsai

• Where's the compromise?
– Constant can have ±215 range of ± 8192 (213) words
– The first three fields are the same the complexity of decoding is

reduced (Fig.3.5)
• Do example in p.119 and see Fig.3.6
• Stored Program Concept

– Instructions are bits,
– programs are stored in memory and to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Machine Language

18Tsung-Han Tsai

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

19Tsung-Han Tsai

• Decision making instructions
– alter the control flow, i.e., change the "next" instruction to be

executed
• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

– Example,p.123: if (i==j) go to L1;
f= g+h;

L1: f= f- i;
beq $s3, $s4, L1
add $s0, $s1, $s2

L1: sub $s0, $s0, $s3
• Unconditional branch instructions: j label

– Example, p.124 if (I ==j)f=g+h;
else f=g-h;

bne $s3,$s4, Else
add $s0,$s1,$s2
j Exit
Else: sub $s0,$s1,$s2
Exit:

3.5 Make decision: control the flow of
program execution

i == j?

f = g– hf = g + h

Else:

Exit:

i= j i≠ j

i == j?

f = g+ h

i≠ j

f=f-1

i=j

Exit

L1

20Tsung-Han Tsai

Make decision: Loops /Branch
• Loop with variable array index

– Example, p.126 Loop: g=g+A[I];
i=i+j;
if (i != h) go to Loop;

Loop: add $t1,$s3,$s3
add $t1, $t1,$t1
add $t1,$t1,$s5
lw $t0,0($t1)
add $s1,$s1,$t0
add $s3,$s3, $s4
bne $s3,$s2,Loop

Note:g,h,I,j ->$s1,$s2,$s3,$s4;base of A is in $s5
• While Loop: see p.127

– Formats:
op rs rt rd shamt funct
op rs rt 16 bit address
op 26 bit address

R
I
J

21Tsung-Han Tsai

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

22Tsung-Han Tsai

• We have: beq, bne, what about Branch-if-less-than?
– New instruction: slt;set on less than

if $s0 < $s1 then go to Less
slt $t0, $s1, $s2
bne $t0,$zero, Less

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

• Case/switch statement: see p.129
– New instruction, jr :jump register

• Summary: Fig.3.9

Make decision: IF-Then/Switch

23Tsung-Han Tsai

3.6 Supporting procedures in computer
hardware

•A procedure or subroutine is used to make program more structure
–easier to understand, and code reused
–pass values and return results through

•To execute a procedure, the computer must do the six steps: p.132
–MIPS allocates seven registers for procedure calling:$a0-$a3,
$v0-$v1 and $ra
–A jump-and-link instruction (jal) for the procedure: It jumps to an
address and simultaneously saves the address of the following
instruction (PC+4) in register $ra

•Stack: last-in-first-out queue
–push: placing data onto the stack, pop:removing data from the
stack
–stack pointer: stores in $sp register
–do example in p.134

•Nested procedures and recursive procedure
•summary of procedure call:Fig.3.11

24Tsung-Han Tsai

0 zero constant :0

1 reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

Registers in MIPS

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont　)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

25Tsung-Han Tsai

Calls: Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture (VAX)
Sometimes stacks are implemented via software convention (MIPS)

C o n t e n t s o f r e g i s t e r $ s 0

C o n t e n t s o f r e g i s t e r $ t 0

C o n t e n t s o f r e g i s t e r $ t 1

$ s p

$ s p

$ s p

H i g h a d d r e s s

L o w a d d r e s s a . b . c .

26Tsung-Han Tsai

• MIPS provided two more ways of accessing operands
– constant or immediate operands: faster to access small constants
– J-type jump instruction

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

– Solutions? Why not put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.
– MIPS instructions:I-type for constant is 16 bits

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

– Example in P.145
• We'd like to be able to load a 32 bit constant into a register

– Must use two instructions, new "load upper immediate" instruction

3.8 Other styles of MIPS addressing

27Tsung-Han Tsai

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

3

Constants

28Tsung-Han Tsai

• lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,
ori $t0, $t0, 1010101010101010

• Addressing in branches and jumps: example in p.149
• MIPS addressing mode summary

– Register addressing
– Base or displacement addressing
– Immediate addressing
– PC-relative addressing
– Pseudodirect addressing

1010101010101010 0000000000000000
0000000000000000 1010101010101010

1010101010101010 1010101010101010
ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

29Tsung-Han Tsai

B y te H a lfw o r d W o r d

R e g is te r s

M e m o r y

M e m o r y

W o r d

M e m o r y

W o r d

R e g is te r

R e g i s t e r

1 . Im m e d ia t e a d d r e s s in g

2 . R e g is te r a d d r e s s in g

3 . B a s e a d d r e s s in g

4 . P C - r e la t i v e a d d r e s s in g

5 . P s e u d o d ir e c t a d d r e s s in g

o p r s r t

o p r s r t

o p r s r t

o p

o p

r s r t

A d d r e s s

A d d r e s s

A d d r e s s

r d . . . fu n c t

Im m e d ia te

P C

P C

+

+

Five MIPS addressing modes

30Tsung-Han Tsai

To summarize:

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

MIPS operands
Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

31Tsung-Han Tsai

• A translation hierarchy

3.9 Running a program

A s s e m b l e r

A s s e m b l y l a n g u a g e p r o g r a m

C o m p i l e r

C p r o g r a m

L i n k e r

E x e c u t a b l e : M a c h i n e l a n g u a g e p r o g r a m

L o a d e r

M e m o r y

O b j e c t : M a c h i n e l a n g u a g e m o d u l e O b j e c t : L i b r a r y r o u t i n e (m a c h i n e l a n g u a g e)

32Tsung-Han Tsai

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e.g., “move $t0, $t1” exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real instructions

Assembly Language vs. Machine Language

33Tsung-Han Tsai

• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”
– virtually all new instruction sets since 1982 have been

RISC
– VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

3.12 Alternative Architectures

34Tsung-Han Tsai

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through

arrays)
– example: lwu $t0,4($s3)
#$t0=Memory[$s3+4];$s3=$s3+4

– What do we have to do in MIPS?
• Others:

– load multiple/store multiple
– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

35Tsung-Han Tsai

80x86

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few

instructions
(mostly designed for higher performance)

• 1997: MMX is added

• 2001: Pentium 4, 144 new insructions
“This history illustrates the impact of the “golden handcuffs” of
compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

36Tsung-Han Tsai

A dominant architecture: 80x86
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes, eg., “base or scaled index

with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult
to build

– compilers avoid the portions of the architecture that are
slow
“what the 80x86 lacks in style is made up in quantity, making it

beautiful from the right perspective”

37Tsung-Han Tsai

J E

J E E I P + d is p la c e m e n t

O ffs e t

C A L L

M O V E B X , [E D I + 4 5]

P U S H

P U S H E S I

A D D w

A D D E A X , # 6 7 6 5

R e g

4 4 8

6

8 3 2

5 3

4 13 3 2

Im m e d ia te

C o n d i t io n

M O V

1
w

1
d

8 8

T E S T E D X , # 4 2

7 1 8 3 2

T E S T P o s tb y te Im m e d ia tew

R e g

f .

e .

d .

c .

b .

a .

C A L L

D is p la c e m e n tr - m �
p o s tb y te

D is p la c e m e n t

38Tsung-Han Tsai

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock rate

• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

• Instruction set architecture
– a very important abstraction indeed!

• Fig.3.39

Summary

39Tsung-Han Tsai

PC

Memory

Address

Instruction�
or data

Data

Instruction�
register

Registers
Register #

Data

Register #

Register #

ALU

Memory�
data �

register

A

B

ALUOut

Fig.5.30 of book

40Tsung-Han Tsai

The Instruction Set: a Critical Interface

instruction set

software

hardware

41Tsung-Han Tsai

MIPS R3000 Instruction Set Architecture (Summary)

• Instruction Categories
– Load/Store
– Computational
– Jump and Branch
– Floating Point

• coprocessor
– Memory Management
– Special

R0 - R31

PC
HI
LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

42Tsung-Han Tsai

Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

43Tsung-Han Tsai

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture
Stacks that Grow Up vs. Stacks that Grow Down:

a
b
c

0 Little

inf. Big 0 Little

inf. Big

Memory
Addresses

SP

Next
Empty?

Last
Full?

How is empty stack represented?

Little --> Big/Last Full

POP: Read from Mem(SP)
Decrement SP

PUSH: Increment SP
Write to Mem(SP)

grows
up

grows
down

Little --> Big/Next Empty

POP: Decrement SP
Read from Mem(SP)

PUSH: Write to Mem(SP)
Increment SP

44Tsung-Han Tsai

Addressing Modes
Addressing mode Example Meaning
Register Add R4,R3 R4← R4+R3

Immediate Add R4,#3 R4 ← R4+3

Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 ← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]; R2 ← R2+d

Auto-decrement Add R1,?R2) R2 ← R2⺋; R1 ← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ← R1+Mem[100+R2+R3*d]
Why Auto-increment/decrement? Scaled?

45Tsung-Han Tsai

Addressing Mode Usage? (ignore register mode)

3 programs

--- Displacement: 42% avg, 32% to 55% 75%

--- Immediate: 33% avg, 17% to 43% 85%

--- Register deferred (indirect): 13% avg, 3% to 24%

--- Scaled: 7% avg, 0% to 16%

--- Memory indirect: 3% avg, 1% to 6%

--- Misc: 2% avg, 0% to 3%

75% displacement & immediate
88% displacement, immediate & register indirect

46Tsung-Han Tsai

MIPS Addressing Modes/Instruction Formats

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• All instructions 32 bits wide

• Register Indirect?

47Tsung-Han Tsai

Typical Operations (little change since 1960)

Data Movement
Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

48Tsung-Han Tsai

Top 10 80x86 Instructions
° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency

