

2.1 Performance

- Measure, Report, and Summarize
- Make intelligent choices
- See through the marketing hype
- ✓ Key to understanding underlying organizational motivation
 Why is some hardware better than others for different programs?
 What factors of system performance are hardware related?
 (e.g., Do we need a new machine, or a new operating system?)
 How does the machine's instruction set affect performance?

Boeing 777 375 4630 610 228750 Boeing 747 470 4150 610 286700 BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughput	Boeing 777 375 4630 610 228750 Boeing 747 470 4150 610 286700 BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughp	Boeing 777 375 4630 610 228750 Boeing 747 470 4150 610 286700 BAC/Sud Concorde 132 4000 1350 178200 Bouglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughput	Airplane Pass	sengers	Range (mi) S	peed (mph)	Passenger throughput
Boeing 7/7 575 4050 610 228750 Boeing 747 470 4150 610 286700 BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughput	Boeing 747 470 4150 610 228750 Boeing 747 470 4150 610 286700 BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughp	Woeing 777 375 4630 610 228730 Boeing 747 470 4150 610 286700 BAC/Sud Concorde 132 4000 1350 178200 Boouglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughput	Desing 777	275	4620	610	229750
BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughput	BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughp	BAC/Sud Concorde 132 4000 1350 178200 Douglas DC-8-50 146 8720 544 79424 •Performance :Capacity, Speed, Range, or Passenger throughput	Dooing 747	575 470	4050	610	228730
•Performance :Capacity, Speed, Range, or Passenger throughput	•Performance :Capacity, Speed, Range, or Passenger throughp	•Performance :Capacity, Speed, Range, or Passenger throughput	AC/Sud Concorde	470	4130	1350	280700
•Performance :Capacity, Speed, Range, or Passenger throughp	•Performance :Capacity, Speed, Range, or Passenger throughp	Performance :Capacity, Speed, Range, or Passenger throughp	Douglas DC 8 50	132	4000	544	70424
			•Performance :C	apacity,	Speed, Range,	or Passenge	er throughp
			•Performance :C	≎apacity,	Speed, Range,	or Passenge	er throughp

Tsung-Han Tsai

4

of Instructions Example

- A compiler designer is trying to decide between two code sequences for a particular machine. Based on the hardware implementation, there are three different classes of instructions: Class A, Class B, and Class C, and they require one, two, and three cycles (respectively).
 - The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
 - The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.
 - Which sequence will be faster? How much?
 - What is the CPI for each sequence?

MIPS example

2.4 Benchmarks

- Performance best determined by running a real application
 Use programs typical of expected workload
 - Or, typical of expected class of applications
 e.g., compilers/editors, scientific applications, graphics, etc.
- Small benchmarks
 - nice for architects and designers
 - easy to standardize
 - can be abused
- SPEC (System Performance Evaluation Cooperative)
 - companies have agreed on a set of real program and inputs
 - can still be abused (Intel's "other" bug)
 - valuable indicator of performance (and compiler technology)

14

SPEC '95

Benchmark	Description		
go	Artificial intelligence; plays the game of Go		
m88ks im	Motorola 88k chip simulator; runs test program		
gcc	The Gnu C compiler generating SPARC code		
compress	Compresses and decompresses file in memory		
li	Lisp interpreter		
ijpeg	Graphic compression and decompression		
perl	Manipulates strings and prime numbers in the special-purpose programming language Perl		
vortex	A database program		
tomcatv	A mesh generation program		
swim	Shallow water model with 513 x 513 grid		
su2cor	quantum physics; Monte Carlo simulation		
hydro2d	Astrophysics; Hydrodynamic Naiver Stokes equations		
mgrid	Multigrid solver in 3-D potential field		
applu	Parabolic/elliptic partial differential equations		
trub3d	Simulates isotropic, homogeneous turbulence in a cube		
apsi	Solves problems regarding temperature, wind velocity, and distribution of pollutant		
fpppp	Quantum chemistry		
wave5	Plasma physics; electromagnetic particle simulation		

Tsung-Han Tsai

2.7Amdahl's Law Execution Time After Improvement = Execution Time Unaffected +(Execution Time Affected / Amount of Improvement **Example:**"Suppose a program runs in 100 seconds on a machine, with multiply responsible for 80 seconds of this time. How much do we have to improve the speed of multiplication if we want the program to run 4 times faster?" How about making it 5 times faster? Principle: Make the common case fast Suppose we enhance a machine making all floating-point instructions run five times faster. If the execution time of some benchmark before the floating-point enhancement is 10 seconds, what will the speedup be if half of the 10 seconds is spent executing floating-point instructions? We are looking for a benchmark to show off the new floating-point unit described above, and want the overall benchmark to show a speedup of 3. One benchmark we are considering runs for 100 seconds with the old floating-point hardware. How much of the execution time would floating-point instructions have to account for in this program in order to yield our desired speedup on this benchmark?

Example

- Suppose we enhance a machine making all floating-point instructions run five times faster. If the execution time of some benchmark before the floating-point enhancement is 10 seconds, what will the speedup be if half of the 10 seconds is spent executing floating-point instructions?
- We are looking for a benchmark to show off the new floating-point unit described above, and want the overall benchmark to show a speedup of 3. One benchmark we are considering runs for 100 seconds with the old floating-point hardware. How much of the execution time would floating-point instructions have to account for in this program in order to yield our desired speedup on this benchmark?

Tsung-Han Tsai

19

20

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Tsung-Han Tsai